Monoid
E Monoid ass an der Mathematik, méi spezifesch an der Algeber, eng algebresch Struktur, déi aus engem Ensembel zesumme mat enger assoziativer binärer Operatioun an engem neutralen Element besteet. All Grupp ass e Monoid, awer net ëmgedréint, well an engem Monoid net all Element invertéierbar muss sinn.
Definitioun
ännerenE Monoid ass een Tripel deen aus engem net-eidelen Ensembel , enger binärer Operatioun
an engem ausgezeechenten Element besteet , soudatt déi follgend Axiomer erfëllt sinn:
- Assoziativitéit:
- .
- ass een neutraalt Element:
- .
Beispiller
ännerenEng allgemeng Klass vu Beispiller fir Monoide liwweren d'Gruppen: Engersäits ass all Grupp ee Monoid. Anerersäits gëtt et awer och Monoiden, déi keng Gruppe sinn, wéi z. B.:
- , d'natierlech Zuelen zesumme mat der üblecher Additioun an der als neutralem Element. Dëst ass ee Monoid, awer keng Grupp, well keng natierlech Zuel ausser der een additiven Inverse huet.
- , d'ganz Zuelen zesumme mat der üblecher Multiplikatioun an der als neutralem Element, ass och ee Monoid, awer keng Grupp, well keng ganz Zuel ausser an ee multiplikativen Inverse huet.
Weider Beispiller fir Monoiden:
- Et sief ee belibegen Ensembel, den Ensembel vun alle Funktioune mat Definitiouns- an Zilensembel an d'Identitéitsfunktioun op (d. h. et gëllt fir all ). Dann ass ee Monoid, woubäi d'Kompositioun vu Funktioune bezeechent.
- Fir all belibegt Element ass , woubäi definéiert ass duerch , ee Monoid, de sougenannten triviale Monoid.
Kuckt och
ännerenUm Spaweck
ännerenCommons: Monoiden – Biller, Videoen oder Audiodateien |